
Received December 14, 2020, accepted January 19, 2021, date of publication February 1, 2021, date of current version February 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055826

A Convolutional Neural Network Approach
to the Classification of Engineering Models
BHARADWAJ MANDA , PRANJAL BHASKARE, AND RAMANATHAN MUTHUGANAPATHY
Advanced Geometric Computing Laboratory, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India

Corresponding author: Bharadwaj Manda (ed16d405@smail.iitm.ac.in)

ABSTRACT This paper presents a deep learning approach for the classification of Engineering (CAD)
models using Convolutional Neural Networks (CNNs). Owing to the availability of large annotated datasets
and also enough computational power in the form of GPUs, many deep learning-based solutions for
object classification have been proposed of late, especially in the domain of images and graphical models.
Nevertheless, very few solutions have been proposed for the task of functional classification of CADmodels.
Hence, for this research, CAD models have been collected from Engineering Shape Benchmark (ESB),
National Design Repository (NDR) and augmented with newer models created using a modeling software to
form a dataset - ‘CADNET’. It is proposed to use a residual network architecture for CADNET, inspired
by the popular ResNet. A weighted Light Field Descriptor (LFD) scheme is chosen as the method of
feature extraction, and the generated images are fed as inputs to the CNN. The problem of class imbalance
in the dataset is addressed using a class weights approach. Experiments have been conducted with other
signatures such as geodesic distance etc. using deep networks as well as other network architectures on the
CADNET. The LFD-based CNN approach using the proposed network architecture, along with gradient
boosting yielded the best classification accuracy on CADNET.

INDEX TERMS Engineering/CADmodels, classification, convolutional neural network, gradient boosting,
light field descriptor (LFD).

I. INTRODUCTION
Classification of Engineering (CAD) models is very impor-
tant for a task such as design reuse. It has been observed
that designers spend a considerable amount of time in search
for the right information as well as use a large percentage of
existing design for a new product development [1]. Gunn [1]
has observed that about 40% of the new designs could
be built from an existing design and 40% from modifying
an existing design. Ullman [2] has indicated that a large
percentage (75% or sometimes, more than that) of design
reuses existing knowledge for the new product development.
Classification is also an important task for retrieval of CAD
models, which in turn employed in design reuse [3]. Another
area of interest is in the CAD assembly model retrieval [4],
where, apart from using topology and connection informa-
tions, classification plays a key role. The interdependence
between product life cycle management (PLM), material
requirements planning (MRP) and CAD systems also calls
for classification and search of 3D Engineering models [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Huanqing Wang.

Considering the applications and the fact that we are in
the digital age with many information archived digitally,
the problem of automatic classification of CAD models
becomes a predominant one.

An Engineering/CADmodel (see Fig. 1a) has features such
as holes (genus> 0), blind holes (genus= 0) and fillets which
are usually absent in a graphical model (see Fig. 1b). Also,
sharp edges are usually found in a CADModel as opposed to
a graphical model which more or less has smooth curvature
throughout.

FIGURE 1. Distinction between a CAD model and a graphical model.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 22711

https://orcid.org/0000-0001-7282-4525

B. Manda et al.: CNN Approach to the Classification of Engineering Models

Traditionally, in the field of Engineering models, boundary
representation (B-Rep) is the native format to store the data.
To protect the proprietary design during data transfer, other
formats such as mesh / tessellated representations are used.
Also, with newer technologies such as additive manufactur-
ing / 3D printing, mesh model representation in the field of
Engineering / CAD is gaining popularity.

A mesh for a CAD model (see Fig. 1a) is substantially
different from that of a graphical model (see Fig. 1b) in the
following ways [6]:
• CAD Model tessellations are typically sparse while that
of graphical models are usually dense.

• CAD Models have a lesser number of triangles in gen-
eral as compared to a graphical model.

In general, the problem of classification of shapes/models
has been an active area of research in several fields viz.
images, graphical models, CAD models etc. for more than
two decades. The problem gained prominence with the start
of digital archiving. For image data, MPEG dataset [7] was
perhaps one of the first ones in the domain of computer
vision. In the area of graphical models, Princeton shape
benchmark (PSB)was one of the earlier ones [8]. Jayanti et al.
introduced Engineering shape benchmark (ESB) for CAD
models [6]. The National Design Repository (NDR) [9] also
contains a few hundred CAD models.

The advent of machine learning techniques and in par-
ticular, the advances made in deep learning, accelerated the
research on the problem of classification. However, deep
learning techniques call for a large number of labeled data
with appropriate class information. Hence, labeled datasets
for images with class information have grown much larger
[10], and so for graphical 3D models [11]. In recent
times, datasets for Engineering/CADmodels have also grown
through acquiring from different resources [12]. Though the
dataset [12] contains a large number of models, the aim seems
to bemore on populating the data rather than providing classi-
fication. In the field of Engineering, it is imperative to classify
data functionally. For example, a pipe and a bolt may look like
a cylinder but have different functionality. This classification
task also requires the people involved to have rich domain
knowledge and experience. As CAD models are a derivate
of the Engineering design process, many of the design data
are also proprietary in nature and hence may not be put in the
public domain [13]. Also, there exists only very few works on
CADmodel classification using deep learning. Qin et al. [13]
use only deep networks (not CNN) and the work presented
in [12] uses basic geometric properties such as normals and
curvatures but does not take functional classification into
account.

Our motivation for addressing the problem of classification
of Engineering / CAD models comes from the following:

1) Most of the CAD datasets (such as [6] or [9]) have
only a few hundred models.

2) Datasets having larger number of CAD models are
either proprietary (not publicly available) [13] or lack
classification information [12].

3) The recent advances in deep learning such as CNNhave
not been made use of, to the best of our knowledge.

In this work, in order to classify the CAD data functionally,
we start by using the publicly available datasets of CAD
Models, ESB andNDR,which also havewell-annotated func-
tional classification. Unfortunately, they have only very few
models, in the order of hundreds. We then resort to creating
CAD models and functionally classify them by adding to the
appropriate class. A dataset termed ‘CADNET’ has been then
prepared. A Convolutional Neural Network (CNN) approach
(only deep network was used in [13]) for the classification of
CAD models is then proposed. It is also crucial to come up
with a network architecture for the intended application. The
key contributions of the paper are as follows:

1) A dataset named ‘CADNET’, which is suitable for deep
learning-based approaches.

2) A CNN-based deep learning approach for the clas-
sification of CAD models using a residual network
structure, inspired by ResNet [14], with much lesser
number of filters and thereby much reduction in the
number of parameters.

3) Used the idea of class-weights, in order to alleviate the
problem of imbalanced classes in CADNET.

4) Proposed the use of gradient-based boosting
approaches to improve the efficiency of classification.

5) The proposed network produces better classification
accuracy with much lesser training time.

The manuscript is organized as follows: Section II dis-
cusses the literature corresponding to 3D CAD models,
in addition to the literature on Images, 3D Graphical Models,
and an overview of the existing datasets for CAD model
classification. The typical pipeline to be employed for a deep
learning based classification task is described in Section III,
and each step of the pipeline is elaborated in Sections IV
to VI. Section VII provides the Implementation Details. The
results, limitations and possible future work are elaborated in
Section VIII, followed by a Conclusion (Section IX).

II. RELATED WORKS
Many works in recent times have focused on 3D graphi-
cal models and images. However, we focus more on the
approaches that have been proposed for the task of classifying
3D CAD models, which are very few.

A. 3D CAD MODELS
Wu and Jen [15] proposed a neural network approach to
classify 3D prismatic parts. The idea used the hypothesis
that a 3D part could be modeled by the contours of its three
projected views. The views were then approximated by as
many rectilinear polygons. Such a representation was used as
an input vector to a back-propagation neural network. A total
of 36 parts were classified in this way but the classification
was hierarchical and not functional. The research presented
in [16] and [17] aimed at performing a classification of the
CADmodels based on their manufacturing process as well as

22712 VOLUME 9, 2021

B. Manda et al.: CNN Approach to the Classification of Engineering Models

TABLE 1. Summary of existing datasets indicated the advantages and limitations of each of them. Most of the datasets are small as indicated by their
respective numbers.

their functionality. The input CAD mesh models were con-
verted into a histogram representation using enhanced shape
distribution, and the extracted representation was then fed
into a k-Nearest Neighbor (kNN) classifier. Support Vector
Machines (SVMs) were employed for classification approach
using surface curvatures as a feature in [18], although the
classification was not based on model functionality. The idea
of SVMs was also used by [19], where a hybrid of moment
invariants, principal moments and geometric ratios were used
as input feature vectors. In each of these studies, the classifi-
cation accuracy was not very high. A comparison of some of
the shape signatures has been provided in [6] for classification
of CAD models.

B. IMAGES AND 3D GRAPHICAL MODELS
For images and 3D graphical models, there exists a plethora
of literature in the last few years that employed advanced deep
learning techniques such as Convolutional Neural Networks
(CNNs). We mention only a few for the sake of completeness
(it may be noted that neural networks have been employed in
other fields such as control systems, for example, see [20]).
CNN gained popularity starting with AlexNet [21] in the
area of image processing, where they employed dropouts that
increased the speed of CNN. For further information, please
refer to the document on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [10]. Further improve-
ments have beenmade in the network architecture for improv-
ing the performance such as VGGNet [22], GoogLeNet [23]
etc. [24] gives an overview of the various deep learning

algorithms and architectures available. [25] presents the vari-
ous challenges that exist in conducting deep learning research
while also briefing about the ongoing efforts and future trends
of deep learning.

For 3D graphical models, Wu et al. proposed
ShapeNet [11], a dataset for volumetric shapes. As in the
area of image processing, further improvements were made
in the techniques for 3D graphical models either using a
point-set representation (as in [26]–[29]) or a Voxel-based
representation (as in [30], [31]). While a few machine learn-
ing approaches perform well for images (sparse representa-
tions, manifold learning etc.), they are not popularly used
for 3D data because such methods exploit the structured
representation of data. For unstructured 3D data such as point
sets etc., they may not perform very well.

C. SUMMARY
Table 1 provides a few details on the existing datasets for
CADmodels along with the number of models, the number of
classes/class along with the category of classification. As can
be seen from the table, most of them have only a very few
number of models. Only ESB [6], which has 801 models,
is available for public use, whereas the one in [13] is not
available for public use. From Table 1, it can also be observed
that the datasets are either not sufficient enough or not avail-
able publicly for a deep-learning based approach. Hence,
there is a requirement to generate a dataset consisting of a
few thousand models with labeled classification that can then
be used for deep learning purpose.

VOLUME 9, 2021 22713

B. Manda et al.: CNN Approach to the Classification of Engineering Models

In general, in the field of CAD/Engineering, very few prob-
lems have employed deep learning approach. Balu et al. [32]
developed a voxel-based 3DCNN approach aimed at a frame-
work for the design for manufacturability (DFM). Recently,
Zhang et al. [33] proposed FeatureNet, another voxel-based
3D CNN approach to learn machining or manufacturing fea-
tures. For the task of classification of CAD models, a first
of its kind deep learning approach was described in [13]
based on a proprietary dataset (7464 models from 28 cat-
egories). Using light field descriptor (LFD) for generating
2D images, they were converted to 1D feature vector using
Zernike moments descriptor. This input vector was then fed
into the deep neural network (DNN), and classification results
were obtained.

It can be clearly seen that the number of works are quite
limited in the area of classification of CAD models. Even
considering recent times, i.e., the last few years, not much
literature is available, to the best of our knowledge. Our aim is
to bridge this gap by generating a dataset as well as using even
further advances made in deep learning - CNN. Hence, in this
paper, CNN, is employed for the functional classification of
CAD models, perhaps for the first time. The focus is on the
dataset ‘CADNET’, which combines ESB, NDR as well as
newly created 3D models.

III. CLASSIFICATION PIPELINE
The overall pipeline for classifying a 3D CAD model using
deep learning can be broadly described as follows:

1) Obtaining a dataset of 3D CAD Models which is
suitable for training and testing a deep learning
architecture.

2) Extracting features from a CAD model using a feature
extraction method.

3) Building a deep learning architecture that can effi-
ciently be trained using the extracted representation as
input.

4) Post-processing of results (if any).
5) Testing the network for performance.

An overview of the possible classification pipelines is shown
in Fig. 2. In the following sections, each step of the pipeline
(Figure 2) is explained in greater detail.

IV. DATASET PREPARATION
A. EXISTING DATASETS
A summary of existing datasets is shown in Table 1. As can be
seen, some of them are based on the manufacturing process
and not functionality. In the datasets that contain functional
classification, most of them are not prepared for deep learn-
ing usage and hence contain very few models. The dataset
from [13], however, is set up with the exclusive purpose of
deep learning usage and hence appears to be very useful.
It has 7464 models with 28 categories. The main limitation
here is that it is a custom dataset and hence is not available
for public usage. Also, the dataset has a high class imbal-
ance, as observed from their paper. More recently, the ABC
Dataset [12] containing 1million CAD objects has beenmade

available. While it may sound promising, it is a mere collec-
tion of CAD objects which lacks any class or category infor-
mation, thus making it unsuitable for a deep learning-based
classification approach.

B. ‘CADNET’—A COLLECTION OF 3D CAD MODELS
In the NDR dataset (based on functional classification) [9],
there are 70 models over 10 classes. Although insufficient
for training a deep neural network in itself, it is publicly
available and the classification is based on the functionality.
In the ESB dataset [6], there are 801 models over 42 cat-
egories (excluding the objects from ‘Miscellaneous’ class),
also classified based on their functionality. ESB is a reason-
ably sized dataset, contains objects frommany categories and
is publicly available. The models from these two datasets are
collected and have been combined into a single dataset - after
checking for duplicates, overlapping classes etc. This resulted
in a collection of 868 3D CAD models over 43 categories.
Although we obtain a decent average of 20 models per-class,
this collection is quite imbalanced with the number of models
per category ranging from as low as 4 to the highest being 61.
Herein arises a need to generate more data in order to increase
the size of the dataset as well as to cover the imbalance as
much as possible.

The procedure adopted in order to achieve this is as
follows. By observing the 3D objects in each category,
an overview of the 3D designs is obtained. Using this
knowledge, a few representative models are parametrically
designed in Autodesk Fusion360 software - for each class.
Following this, more 3D models are generated via a python
script linked to the Autodesk Fusion360 API, for various sets
of parameter values.

For example, in order to model a cuboid parametrically,
one needs three parameters - for the three dimensions (say l,
b, h). For different sets of values for l, b & h, we get corre-
sponding cuboids. This process essentially generates multiple
variants of a certain category by using many sets of parameter
values. In this way,many training examples are created. Every
generated 3D model is then verified for correctness. Repeat-
ing this process for every category in the collectionmentioned
above, a dataset of 3317 3D CAD objects over 43 categories
is obtained. We refer to this dataset as ‘CADNET’. The
dataset is made available at https://github.com/bharadwaj-
manda/CADNET_Dataset

Table 2 shows the details of CADNET, which gives the
category name and number of models in each of them. A few
sample models from CADNET are shown in Figure 3. The
dataset CADNET now has a significantly large number of
models, which can be used in a deep learning setting. The
classes are still not balanced, and the method adopted to
tackle this is presented in section VII-B.

V. FEATURE EXTRACTION AND CNN-BASED
CLASSIFICATION
In the recent past, the emergence of other deep learning
techniques has revolutionized the use of machine learning

22714 VOLUME 9, 2021

B. Manda et al.: CNN Approach to the Classification of Engineering Models

FIGURE 2. Illustrating the possible classification pipelines for 3D CAD Models using deep networks. We use the approach proposed in the ‘middle.’

TABLE 2. Details of the developed ‘CADNET’ dataset - name of the category and the number of models in each of them.

for various research domains. A significant breakthrough in
the field of image classification has been achieved in [21],
where Convolutional Neural Networks (CNNs) are used for
the task of classifying more than 1 million images belonging
to 1000 classes, as a part of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in the year 2012. This
motivated us to employ CNN for CADNET.

A. FEATURE EXTRACTION—LIGHT FIELD DESCRIPTOR
(LFD) WITH WEIGHTED VIEWS
CNN has been demonstrated extensively on 2D images as
inputs. As our inputs are 3D models, it is not very evident
on how to convert them to images. Nevertheless, there exists
a popular approach called light field descriptor (LFD) that

generates a set of images from a 3D model that can then be
used for 2DCNN. The idea of LFD, as described by [34], uses
20 cameras placed at the vertices of a regular dodecahedron to
capture images of the 3D model from various views. We use
this method to obtain 20 images for every CAD model from
our dataset. Each of these images is then assigned the same
class label as that of the corresponding CAD model. This
process is repeated for every model in the dataset. Now,
we use this set of annotated images as the input data for the
convolutional neural network.

It should be noted here, however, that this LFD technique is
not the same as the one used in [13]. In [13], 10 light fields are
created for each 3D model, and 10 images are extracted from
each light field. Thus, in effect, 100 images are extracted for

VOLUME 9, 2021 22715

B. Manda et al.: CNN Approach to the Classification of Engineering Models

FIGURE 3. Sample models from the ‘CADNET’ dataset.

a single 3D Model which are further processed by a Zernike
Moments descriptor that produces a 1D feature vector. In our
case, we greatly simplify the process by using just 20 images
per 3D model (i.e. one light field). The reasons for using only
20 images over 100 images as mentioned in [13] are because
(1) Chen et. al [34] showed that 20 images are sufficient and
using more than that leads to redundancy. We also observed
a similar trend when more number of images were used, and,
(2) Using 20 images also takes much lesser time for
computation.
On top of that, we employ a post-processing scheme (as will
be discussed in Section VI-D), a machine learning algorithm,
which learns the influence of each viewing direction on the
output prediction. Thus, in effect, we use a weighted LFD
approach to extract images from the 3D model, while also
knowing the effect of the individual viewing direction.

VI. NETWORK ARCHITECTURE
As part of the ILSVRC challenge, every year newer, deeper,
and more efficient architectures have been proposed, out-
performing the previous ones. AlexNet [21] was the first
architecture to have shown tremendous improvement in clas-
sification performance using CNNs when compared to earlier
methods. VGGNet [22] has bettered the classification results
as compared to AlexNet. Considered to be very deep at the
time of its introduction, VGGNet takes an enormous amount
of time to train. GoogLeNet [23] (sometimes referred to as
InceptionNet v1) provided further improvement in accuracy
by using filters with multiple sizes operating on the same
level, i.e. using a ‘wider’ network rather than a ‘deeper’
one. The winner of the 2015 edition of the challenge is an
architecture proposed by [14], popularly known as ResNet.
It uses the idea of residual connections, that helps in faster
training of deeper networks. Inspired by this idea of residual
connections (see Fig. 4), and the advantages it offers for faster
and effective training of deep networks, we build a 35-layer

FIGURE 4. Illustrating the idea of residual connections [14].

CNN (see Fig. 5). As discussed in Section V-A, 20 images are
extracted from each 3D CAD model in the dataset (both for
train set and test set). For each of these 20 images, the class
label of the corresponding input model is assigned to them.
The images from the training set are then used for training
the CNN.

A. INPUT LAYER
The input to the network is an image of size 256*256*1. Our
input convolutional layer consists of 32 filters, each of which
performs a 7*7 convolution operation on the input image. The
output of the convolutions is then passed through a series of
hidden convolutional layers before reaching the final output
layer. The activation function used is ReLU.

B. HIDDEN LAYERS AND RESIDUAL CONNECTIONS
The hidden layers consist of many residual blocks. In general,
when we have a series of convolutional layers, the input
of each layer is simply the output of the previous layer.
However, when we have a residual connection between two
layers, the input of each layer will be a summation of the
output of the previous layer and the value from the residual
connection (See Figure 4 for illustration). The hidden layers
are organized as shown in Figure 5. The arrangement of the
hidden layers is explained as follows.

There are 5 ‘groups’ of hidden layers (each indicated by
a different color in Figure 5). Each group has three resid-
ual blocks. Residual connections exist between consecutive
residual blocks. Each residual block has two hidden layers,
and hence there are six hidden layers per group. Batch nor-
malization is applied at the beginning of every residual block.
Solid lines indicate that the number of filters remains the
same, while dashed lines indicate that there is an increase in
the number of filters by a factor of 2. The number of filters in
each layer and the filter size are mentioned across each layer
in the Figure. Convolutions are performed using stride = 1.
Some hidden layers are indicated by a ‘/2’ in the Figure.
In such layers, two additional operations are performed ahead
of the batch normalization - (1) max-pooling of size 2*2, (2)
1*1 convolution operation with stride = 2. ReLU activations
are used in all hidden layers.

Batch normalization is applied to the output of the last
layer of the last group. It is then fed into a pooling layer
that performs average pooling of size 4*4. The output is then
flattened into a 1D vector and is then fed into a series of two

22716 VOLUME 9, 2021

B. Manda et al.: CNN Approach to the Classification of Engineering Models

FIGURE 5. Proposed CNN Architecture. This network requires lesser
number of filters thereby reducing the number of parameters. Details are
presented in Section VI.

fully connected layers, each of 512 nodes. ReLU activation is
used in both these layers. Dropouts with a probability value
of 0.25 are applied in these two layers in order to enhance the
prediction accuracy and to avoid any overfitting.

The total number of hidden layers = 5*6 (convolutional
layers) + 1 average pooling layer + 2 fully connected
layers = 33 layers.
It is to be noted here, that although the idea of resid-

ual connections is adopted from [14], the proposed net-
work architecture differs significantly from that of ResNet.
These differences arise primarily due to the differences in
the nature of the data involved. ResNet, built for the purpose
of ImageNet Classification, deals with images that contain
real-world graphical objects and each datum consists of many
details. In our case, we specifically focus on the images that
are extracted from Engineering/CAD Models, which have
relatively lesser information as compared to the images from
ImageNet dataset. The images are also single-channel, unlike
ImageNet, where each image is an RGB (3-channel) image.
It should also be noted that although the images extracted
from LFD are of size 256*256, it only serves as an outer

FIGURE 6. Need for a post processing scheme to reduce error due to
misclassifications.

boundary for the 3D objects. The actual image is contained
within this square, and a significant portion of the image is
empty, unlike the images from ImageNet. Hence,

1) The proposed network requires a fewer number of fil-
ters to capture the features in the initial layer (32) as
opposed to ResNet (64).

2) We require a lesser number of filters (in the hidden
layers) compared to ResNet to extract the features from
the images. Hence we have six layers of 32, 64, 128,
256 and 512 (= 5952 filters) as opposed to 6 layers
of 64, 8 layers of 128, 10 layers of 256 and 6 layers
of 512 (= 7040 filters) in ResNet.

3) This, in turn, reduces the number of parameters (by
about a million in the network)

C. OUTPUT LAYER
The output from the last hidden layer is then fed into a
fully connected layer, with the number of nodes equal to the
number of classes. In our case, it is 43 for CADNET. The
activation function used here is softmax. The output of this
layer is a 1D vector of size 43. The values of this vector
indicate probability values. Based on the highest probability
value, the class label for the input image is obtained.

D. POST PROCESSING
The output of the network is a vector of 43 probability
values for every input image. Generally, the class with the
maximum probability value is chosen to be the class label.
In this case, however, themachine learning algorithms such as
XGBoost [35], and CatBoost [36] are used to do this. The rea-
son is that LFD is a view-based method, and some images are
misclassified because models from different classes appear
similar from a certain viewing direction (Refer to Figure 6).
In order to reduce such misclassifications and thus enhance
the prediction accuracy, we process the probability values
using XGBoost and CatBoost. These algorithms output a
single class label for the image by learning the effect of

VOLUME 9, 2021 22717

B. Manda et al.: CNN Approach to the Classification of Engineering Models

FIGURE 7. Pipeline of our approach for the classification of a given CAD model using LFD, convolution and post-processing (weighting using boosting
approaches).

different viewing directions. Now, since each 3D CADmodel
has 20 images, we would have 20 labels per model. A major-
ity vote of these 20 values is then taken, and a single label per
model is obtained.

VII. IMPLEMENTATION DETAILS
The overall pipeline of our implementation for a CAD model
classification is depicted in Figure 7 with LFD as the feature
extraction, with a CNN using the network architecture as
described in Section VI, and with post-processing as dis-
cussed in Section VI-D.

A. TRAINING AND TEST SET
In case of large datasets such as [10] for images, [11] for 3D
shapes etc., the process of splitting the data into training and
test sets is quite straight forward - a percentage of samples
are chosen randomly for the test set and the remaining for the
training set. This idea generally works because the number
of per-class models available for training is high. Also, all
the intra-class variations are more or less sure to be captured,
owing to the size of the dataset. The same idea is applied
for CADNET, with a train-test split of 80-20, which results
in 2654 models for training and 663 models for testing.
A lower split % for training set resulted in faster training,
but at the cost of lesser accuracy - for want of more training
data. Higher split % for training set resulted in overfitting
the training data, while also taking much longer to train. The
80-20 split used in our training methodology is not arbitrary.
It is as per the standard Pareto Principle, which is quite
widely used in literature, and our experiments seemed only
to reconfirm this. Hence, we presented the results of the
80-20 split, which yields the best classification accuracy.

B. ADDRESSING CLASS IMBALANCE
The problem of class imbalance still exists in this dataset (see
Table 2 for details). We tackle this issue by using the idea
from [37], during the prediction phase of the neural network.
We estimate class weights for the unbalanced dataset. The
weight of each class is simply the ratio of the number of

samples to the product of classes and the bin-count of the
class labels.

C. HYPERPARAMETER TUNING, LOSS FUNCTION, AND
OPTIMIZATION
Training a neural network is a tedious task because of the
many decisions involved such as choice of performance met-
rics, hyper-parameters, loss function, debugging strategies
etc. Our choices are mainly based on heuristics ([38]–[40])
and are backed by experimental verification.

After various experiments based on heuristics, we choose
a learning rate of 0.001 for training our network. The
back-propagation algorithm [41] is used for training the
neural network. There are various numerical optimization
algorithms available ([42]). We adopt a mini-batch training
scheme that uses more than one training example but less than
the total number of examples at once. The training examples
are split into many batches with 20 examples per batch.

Since the task at hand is multi-class classification, we use
the categorical cross-entropy loss function, and the Adam
optimization algorithm [43] is used to minimize this loss
function. The CNN is trained for 100 epochs. For regular-
ization, there are various methods in practice ([44]) such as
enforcing norm penalties, early stopping, etc. In our case,
we use the idea of dropouts [45] with a probability value
of 0.25 in for the fully connected layers.

D. CODING FRAMEWORK AND SYSTEM CONFIGURATION
For implementing our neural network, we use Python3 with
Keras [46] and Tensorflow [47] (gpu-version 1.11.0 [48]).
In order to implement the XGBoost and CatBoost algorithms,
we use Python3, and sklearn [49].

All the implementations are carried out on a system run-
ning Ubuntu 18.04 Operating System. The system has an
Intel Core i7-4930K CPU with 64GB RAM and an NVIDIA
GeForce GTX 1080Ti GPU with 11GB RAM.

VIII. RESULTS AND DISCUSSION
Our CNN classifier is evaluated for performance on the
CADNET dataset, and the results are reported in this
section. Training and test sets are chosen, as discussed

22718 VOLUME 9, 2021

B. Manda et al.: CNN Approach to the Classification of Engineering Models

TABLE 3. Misclassification results on CADNET.

in Section VII-A. As there exists class imbalance, it is
addressed, as discussed in Section VII-B. The obtained
accuracy is then put into perspective. Our results are also
compared with various other features and their accuracies
obtained using a deep neural network.

A. RESULTS ON CADNET DATASET
The CNN training time is approximately 30h, due to a
large number of inputs (2654*20 images) that the CNN
has to process. The accuracy computed at the output layer
of the CNN is 93.41%. The accuracy is further improved
using XGBoost/CatBoost algorithm as in Section VI-D.
Roughly, the time taken for XGBoost is 15s and for CatBoost
is 12s. With XGBoost, the obtained accuracy is 95.63% with
29 models misclassified out of 663 models in the test set.
Similar results are obtained using CatBoost - 95.47% with
30 misclassifications. Figures 8a and 8b show the plots of
CNN accuracy and test loss respectively with respect to the
number of epochs when trained on CADNET. We report the
results using XGBoost since it obtains a higher numeric value
for accuracy as compared to CatBoost.

Table 3 shows per-class classification results after applying
boosting. There are a total of 663 models in the test set,
across 43 categories. Out of these, 27 classes are perfectly
classified without a single misclassification (401 models);
for the majority of the remaining classes, there are just 1 or
2 models that are misclassified. For a majority of these
models, the misclassification results are quite understand-
able since the class predicted by the proposed architecture
and the actual class have a lot of similarities. For example,
a model from the class Thick_Plates is wrongly identified

as Thin_Plates, since both classes are Plates. Also, 2 models
from Bolt_Like_Parts are classified as Screws, and 2 models
from Screws are identified as Bolts. A Spoked_Wheel is
identified as a Gear and so forth. These classes are pretty sim-
ilar, and the resulting misclassifications are understandable.
This is due to LFD being a view-based technique. For these
models, when the extracted images by LFD are visualized,
they look very much similar to each other and hence the
wrong predictions.

Regarding the apparently non-obvious misclassifications,
when the models are visualized, they look very different from
the other objects of the same class. In fact, they look similar
to some objects of the predicted class. For instance, Figure 9
shows some visual results of the wrongly classified models.
The first object is from the class "Rectangular_Housing"
which it is misclassified as a "Thin_Plates". Similarly, for
the second object, the prediction is "Rectangular_Housing",
while the object is a "Thick_Plate". It is easy to see why these
misclassifications occur, as the models look very similar to
some objects of the predicted class.

B. COMPARISON WITH OTHER METHODS ON CADNET
USING DEEP NETWORKS
There is no information available to directly compare the
proposed CNN-based approach on CADNET. As there was
no deep network-based approach employed on CADNET,
we also implemented a deep neural network (DNN). We need
to select and extract features from each input 3D CADmodel
such that the extracted representation can capture the essential
information from the input model. As an initial trial, a naive
Voxel-based 3D CNN approach is used. It is a 14 layer

VOLUME 9, 2021 22719

B. Manda et al.: CNN Approach to the Classification of Engineering Models

FIGURE 8. Plots of Accuracy and Test Loss over the training period (Number of epochs). (a) CNN accuracy increases as training time
progresses; (b) CNN test loss decreases as training time progresses.

FIGURE 9. Sample misclassification results of the proposed method
when trained on CADNET.

network which consists of a series of 3D Convolution and
3D MaxPool layers followed by two dense layers. This naive
approach of directly using aVoxel-based 3DCNN, performed
very poorly (classification accuracy is 36%), which is to be
expected due to the presence of features such as holes etc.
in 3D CADmodels. Also, the presence of many empty/sparse
voxels arising due to sparse nature of the point-sets of CAD
models do not help in obtaining a better accuracy.

Further experiments are carried out using an 8-layer,
fully connected, deep neural network (DNN). Extensive 3D
feature extraction techniques have been proposed in [5],
[50], [51] and [52]. For our work, we have tried various
geometry-based feature extractionmethods such as Euclidean
distance between points, geodesic distance, a hybrid of
Euclidean and geodesic distances, the angle between normals
etc. Using these methods, we obtained a 1D vector represen-
tation of the 3D shape and then fed it as an input vector to the
deep neural network.

Figure 10 indicates the accuracy results using various
feature-classifier combinations on CADNET. It can be
observed that the best accuracy obtained is only 84.61%
using 3D signatures, while the naive Voxel-based 3D CNN
performed very poorly. On the other hand, our method
of using LFD with CNN, along with combining weighted

views yielded much higher accuracy. The proposed network
architecture is also compared with state-of-the-art CNN
architectures such as GoogLeNet [23] and ResNet [14]. The
proposed network yielded a maximum accuracy of 95.63%,
much higher than the next best one, while also taking much
lesser time to train.

C. COMPARISON WITH DEEP LEARNING APPROACHES
USED FOR GRAPHICAL MODELS
As mentioned in Section II, most deep learning approaches
for graphical models either use a point-set representation or a
Voxel-based representation. It may be noted that the point-set
representation of CAD models is sparse and non-uniform,
thus leading to many empty voxels in the voxel-based repre-
sentation. Hence, a direct 3DCNNon a voxel-based represen-
tationmay not workwell for the classification task of an entire
3D CAD model (substantiated with results from Figure 10).
From this, it can be seen that such methodologies adopted
for 3D graphical models need not perform very well on 3D
Engineering/CAD models. A few approaches, however, such
as the Multi-View CNN (MVCNN) [53], use a view-based
method, i.e. use images of the 3D models. Since such an
approach appears to work well on CAD models, we exper-
imented with this approach on CADNET.

MVCNN uses two camera setups - (1) 12 views (one view
for every 300 from 00 to 3600), under the assumption that the
input shapes are upright oriented along a consistent axis and
(2) 80 views: 20 views that are obtained from viewpoints at
the 20 vertices of an icosahedron enclosing the shape and then
from each viewpoint, using 00, 900, 1800 and 2700 rotation
along the axis passing through the viewpoint and the object
centroid. No prior assumption is made regarding the orienta-
tion of the object in this case. A TensorFlow implementation
of MVCNN with the first camera setup is available publicly
on GitHub [54]. The method uses 12 images, extracted from
12 viewing directions, and these images are fed into the
network which is trained on CADNET for of 100 epochs
(default according to the paper).

The accuracy obtained using this method on CADNET
is only 58.75% after training for 100 epochs. By further

22720 VOLUME 9, 2021

B. Manda et al.: CNN Approach to the Classification of Engineering Models

FIGURE 10. Comparing various feature-classifier combinations on CADNET.

FIGURE 11. Comparing the training time of various networks when
trained on CADNET.

increasing the number of epochs, a maximum accuracy
of 61.25% is obtained at around 170 epochs, after which no
further improvement is noticed. In fact, after 200 epochs,
the model begins to overfit the training data, and the test
accuracy begins to reduce. This is to be expected due to
several reasons. Firstly, MVCNN with the first camera setup
uses 12 views, under the assumption that the input shapes are
upright oriented along a consistent axis. While this assump-
tion might hold true for datasets such as ModelNet, the same
cannot be said for CAD datasets where the objects consist
of volumetric features that are not always oriented along a
standard axis. Also, using just these 12 views might not be
sufficient enough for training. Secondly, the network archi-
tecture is not very deep - only 5 conv layers, 1 view pooling
layer followed by 3 fully connected (fc) layers (very much
like AlexNet which also, incidentally, has 5 conv and 3 fc lay-
ers). Considering the fact that deeper architectures for images
such ResNet have shown significant improvement in results

as compared to AlexNet, we have also experimented with
a modified architecture for MVCNN that is ‘ResNet-like’.
This resulted in an accuracy of 72.33% - indicating a strong
influence of the network architecture on the classification
accuracy.

On similar lines, extending the available TensorFlow
implementation for the second camera setup, the MVCNN
architecture is trained on CADNET once again for
100 epochs. The obtained test accuracy is only 41.25% when
trained for 100 epochs. By further training, an accuracy value
of 62.5% is obtained at around 260 epochs, beyond which the
model begins to overfit the training data. The reason for the
failure of MVCNN to perform well on CADNET, even using
the second camera setup - without any assumption regarding
the orientation of the objects, could be that ModelNet is a
relatively well-balanced dataset, with many more number
of training examples as compared to CADNET. Since class
imbalance is not well-handled in this method, it fails to
perform well on CADNET, in which class imbalance is
present. Since our method takes into account the imbalanced
nature of the dataset, it performs way better than MVCNN on
CADNET. In addition to this, there is every possibility that
using such a large number of views could lead to overfitting,
as not much additional information is obtained through these
images. This is evident in [53] where the improvement in
accuracy is less than 1%. Like in the first case, we have
also experimented with a modified ‘ResNet-like’ architecture
for MVCNN which resulted in an accuracy of 73.67% -
once again indicating the strong influence of the network
architecture on the classification accuracy.

In summary (see Figure 12), our proposed network archi-
tecture, even with plain LFD (without weighted views), per-
forms much better than the highest obtained accuracy using
the techniques mentioned above on CADNET, resulting in
an accuracy of 93.41% (next highest is 73.67%), despite
using a ResNet-like architecture. The reason for this method

VOLUME 9, 2021 22721

B. Manda et al.: CNN Approach to the Classification of Engineering Models

FIGURE 12. Comparing the accuracies of view-based deep learning
techniques on CADNET.

to perform well is due to the modifications that have been
done to the architecture, to suit CAD model images (as
elaborated in Section VI-B). Furthermore, by using the pro-
posed weighted LFD views scheme, the accuracy is improved
further to 95.63%. From these experiments, it can be con-
cluded that the proposed network architecture, along with the
view-weights and class-weights approach achieves the best
performance on CADNET.

D. LIMITATIONS AND POSSIBLE FUTURE WORK
The scope of this work is limited to 3D CAD Mesh models.
Other kinds of inputs, such as images or even 3D point sets
etc., are not handled by the proposed approach. It is worth
exploring to consider building a unified network architecture
to process multiple input formats. Also, one possible way to
improve the results could be to use a much deeper network
and with many more filters in each layer.

Also, when the dataset is made open, users could contribute
towards enhancing the dataset, which in turn can be used to
increase the performance of the network. As an extension of
this work, an automatic CNN-based 3D CADmodel retrieval
system can be developed. The input queries to the search
engine can be compared against the models from CADNET
database, using the classification results from the proposed
CNN. The current work could also be extended to a CAD
assembly model retrieval [4] and sketch-based retrieval of
CAD models [55].

IX. CONCLUSION
We built a collection of 3D CAD (Engineering) models
with functional classification, termed as CADNET, using the
available data from existing datasets ESB and NDR, and
augmenting them with manually generated models. A convo-
lutional neural network (CNN) classifier for 3D CADmodels
was then built, perhaps for the first time. It was observed
that processing the 3D CAD models directly into a 3D CNN
yielded poor results. Hence, light field descriptor (LFD)
was then used for extracting features from a CAD model,
and the obtained images were fed into the proposed CNN.
A residual network architecture for CAD models with much
lesser number of filters (thereby reducing the number of

parameters and the time for training) was also proposed.
We also observed that 20 images per CAD model was suffi-
cient. The problem of class imbalance was addressed by using
a class-weight approach. Post-processing of the CNN results
was done using XGBoost / CatBoost. It was also shown that
proposed approach resulted in the highest classification accu-
racy when compared to other features/networks. Possibilities
of extending this work to related research problems have also
been discussed.

ACKNOWLEDGMENT
Thanks are due to the teams of Purdue ESB and National
Design Repository, for making their data publicly available.

REFERENCES
[1] T. G. Gunn, ‘‘Themechanization of design andmanufacturing,’’ Sci. Amer.,

vol. 247, no. 3, pp. 114–131, 1982.
[2] D. G. Ullman, The Mechanical Design Process, vol. 2. New York,

NY, USA: McGraw-Hill, 2010. [Online]. Available: https://www.
davidullman.com/mechanical-design-process-6ed

[3] J. Bai, S. Gao, W. Tang, Y. Liu, and S. Guo, ‘‘Design reuse oriented
partial retrieval of CAD models,’’ Comput.-Aided Des., vol. 42, no. 12,
pp. 1069–1084, Dec. 2010.

[4] Z. Han, R. Mo, H. Yang, and L. Hao, ‘‘CAD assembly model retrieval
based on multi-source semantics information and weighted bipartite
graph,’’ Comput. Ind., vol. 96, pp. 54–65, Apr. 2018.

[5] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani, ‘‘Three-
dimensional shape searching: State-of-the-art review and future trends,’’
Comput.-Aided Des., vol. 37, no. 5, pp. 509–530, Apr. 2005.

[6] S. Jayanti, Y. Kalyanaraman, N. Iyer, and K. Ramani, ‘‘Developing an
engineering shape benchmark for CAD models,’’ Comput.-Aided Des.,
vol. 38, no. 9, pp. 939–953, Sep. 2006.

[7] L. J. Latecki, R. Lakamper, and T. Eckhardt, ‘‘Shape descriptors for non-
rigid shapes with a single closed contour,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), vol. 1, Jun. 2000, pp. 424–429.

[8] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, ‘‘The princeton shape
benchmark,’’ in Proc. Shape Model. Appl., Jun. 2004, pp. 167–178.

[9] D. Bespalov, C. Y. Ip, W. C. Regli, and J. Shaffer, ‘‘Benchmarking CAD
search techniques,’’ in Proc. ACM Symp. Solid Phys. Modeling (SPM),
New York, NY, USA, 2005, pp. 275–286.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘Ima-
geNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015.

[11] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, ‘‘3D
ShapeNets: A deep representation for volumetric shapes,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1912–1920.

[12] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
M. Alexa, D. Zorin, and D. Panozzo, ‘‘ABC: A big CADmodel dataset for
geometric deep learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 9601–9611.

[13] F.-W. Qin, L.-Y. Li, S.-M. Gao, X.-L. Yang, and X. Chen, ‘‘A deep learning
approach to the classification of 3D CAD models,’’ J. Zhejiang Univ.
Sci. C, vol. 15, no. 2, pp. 91–106, Feb. 2014.

[14] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[15] M. C. Wu and S. R. Jen, ‘‘A neural network approach to the classifica-
tion of 3D prismatic parts,’’ Int. J. Adv. Manuf. Technol., vol. 11, no. 5,
pp. 325–335, Sep. 1996.

[16] C. Y. Ip, W. C. Regli, L. Sieger, and A. Shokoufandeh, ‘‘Automated
learning of model classifications,’’ in Proc. 8th ACM Symp. Solid Model.
Appl. (SM), New York, NY, USA, 2003, pp. 322–327.

[17] C. Y. Ip and W. C. Regli, ‘‘Content-based classification of CAD mod-
els with supervised learning,’’ Comput.-Aided Des. Appl., vol. 2, no. 5,
pp. 609–617, Jan. 2005.

[18] C. Y. Ip and W. C. Regli, ‘‘Manufacturing classification of CAD models
using curvature and SVMs,’’ in Proc. Int. Conf. Shape Model. Appl. (SMI),
2005, pp. 361–365.

22722 VOLUME 9, 2021

B. Manda et al.: CNN Approach to the Classification of Engineering Models

[19] S. Hou, K. Lou, and K. Ramani, ‘‘SVM-based semantic clustering and
retrieval of a 3D model database,’’ Comput.-Aided Des. Appl., vol. 2,
nos. 1–4, pp. 155–164, 2004.

[20] Y. Wang, H. Shen, and D. Duan, ‘‘On stabilization of quantized sampled-
data neural-network-based control systems,’’ IEEE Trans. Cybern., vol. 47,
no. 10, pp. 3124–3135, Oct. 2017.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds. Red Hook, NY, USA: Curran Associates, 2012, pp. 1097–1105.

[22] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks
for large-scale image recognition,’’ CoRR, vol. abs/1409.1556, pp. 1–14,
Sep. 2014.

[23] C. Szegedy,W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
CoRR, vol. abs/1409.4842, 2014.

[24] A. Shrestha and A. Mahmood, ‘‘Review of deep learning algorithms and
architectures,’’ IEEE Access, vol. 7, pp. 53040–53065, 2019.

[25] X.-W. Chen and X. Lin, ‘‘Big data deep learning: Challenges and perspec-
tives,’’ IEEE Access, vol. 2, pp. 514–525, 2014.

[26] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, ‘‘PointNet: Deep
learning on point sets for 3D classification and segmentation,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 77–85.

[27] S. Ravanbakhsh, J. G. Schneider, and B. Póczos, ‘‘Deep learning with sets
and point clouds,’’ CoRR, vol. abs/1611.04500, pp. 1–12, Nov. 2017.

[28] A. Garcia-Garcia, F. Gomez-Donoso, J. Garcia-Rodriguez,
S. Orts-Escolano, M. Cazorla, and J. Azorin-Lopez, ‘‘PointNet: A 3D
convolutional neural network for real-time object class recognition,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2016, pp. 1578–1584.

[29] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, ‘‘PointNet++: Deep hierarchical
feature learning on point sets in a metric space,’’ in Proc. NIPS, 2017,
pp. 1–14.

[30] D. Maturana and S. Scherer, ‘‘VoxNet: A 3D convolutional neural network
for real-time object recognition,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2015, pp. 922–928.

[31] C. R. Qi, H. Su,M. NieBner, A. Dai, M. Yan, and L. J. Guibas, ‘‘Volumetric
and multi-view CNNs for object classification on 3D data,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 5648–5656.

[32] A. Balu, K. G. Lore, G. Young, A. Krishnamurthy, and S. Sarkar, ‘‘Adeep
3D convolutional neural network based design for manufacturability
framework,’’ CoRR, vol. abs/1612.02141, 2016.

[33] Z. Zhang, P. Jaiswal, and R. Rai, ‘‘FeatureNet: Machining feature recog-
nition based on 3D convolution neural network,’’ Comput.-Aided Des.,
vol. 101, pp. 12–22, Aug. 2018.

[34] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung, ‘‘On visual simi-
larity based 3D model retrieval,’’ Comput. Graph. Forum, vol. 22, no. 3,
pp. 223–232, Sep. 2003.

[35] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’ in
Proc. KDD, 2016, pp. 785–794.

[36] A. V. Dorogush, V. Ershov, and A. Gulin, ‘‘CatBoost: Gradient boosting
with categorical features support,’’ CoRR, vol. abs/1810.11363, pp. 1–7,
Oct. 2017.

[37] G. King and L. Zeng, ‘‘Logistic regression in rare events data,’’ Political
Anal., vol. 9, no. 2, pp. 137–163, Spring 2001.

[38] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Chapter—
PracticalMethodology. Cambridge,MA,USA:MIT Press, 2016. [Online].
Available: http://www.deeplearningbook.org

[39] Y. Bengio, ‘‘Practical recommendations for gradient-based training of
deeparchitectures,’’ CoRR, vol. abs/1206.5533, 2012.

[40] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, ‘‘Exploring strate-
gies for training deep neural networks,’’ J.Mach. Learn. Res., vol. 10, no. 1,
pp. 1–40, Jan. 2009.

[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning rep-
resentations by back-propagating errors,’’ Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986.

[42] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’
CoRR, vol. abs/1609.04747, pp. 1–14, Sep. 2016.

[43] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. Int. Conf. Learn. Represent. (ICLR), vol. abs/1412.6980, 2015,
pp. 1–15.

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Chapter—
Regularization for Deep Learning. Cambridge, MA, USA: MIT Press,
2016. [Online]. Available: http://www.deeplearningbook.org

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[46] F. Chollet. (2015). Keras. [Online]. Available: https://github.com/
fchollet/keras

[47] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘TensorFlow:
A system for large-scale machine learning,’’ in Proc. 12th USENIX
Conf. Operating Syst. Design Implement. (OSDI). Berkeley, CA, USA:
USENIX Association, 2016, pp. 265–283.

[48] Tensorflow-GPU. Tensorflow Documentation. [Online]. Available:
https://www.tensorflow.org/guide/gpu

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Pas-Sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, 2011.

[50] A. Cardone, S. K. Gupta, and M. Karnik, ‘‘A survey of shape similarity
assessment algorithms for product design and manufacturing applica-
tions,’’ J. Comput. Inf. Sci. Eng., vol. 3, no. 2, pp. 109–118, Jun. 2003.

[51] J. W. H. Tangelder and R. C. Veltkamp, ‘‘A survey of content based
3D shape retrieval methods,’’ in Proc. Shape Modeling Appl., 2004,
pp. 145–156.

[52] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, ‘‘Shape distribu-
tions,’’ ACM Trans. Graph., vol. 21, no. 4, pp. 807–832, 2002.

[53] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, ‘‘Multi-view con-
volutional neural networks for 3D shape recognition,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 945–953.

[54] T. Lee. (2015). An Multi-View CNN (MVCNN) Implementation With Ten-
sorflow. [Online]. Available: https://github.com/WeiTang114/MVCNN-
TensorFlow

[55] F.-W. Qin, S.-M. Gao, X.-L. Yang, J. Bai, and Q.-H. Zhao, ‘‘A sketch-based
semantic retrieval approach for 3D CAD models,’’ Appl. Math. A, J. Chin.
Univ., vol. 32, no. 1, pp. 27–52, Mar. 2017.

BHARADWAJ MANDA received the B.Tech.
degree in computer science and engineering from
the National Institute of Technology Tiruchi-
rappalli, in 2016. He is currently pursuing the
Ph.D. degree with the Department of Engineer-
ing Design, Indian Institute of TechnologyMadras
(IIT Madras).

Since 2016, he has been a Research Assis-
tant and Teaching Assistant with IIT Madras. His
current research interests include deep learning,

geometry, computer graphics, and computer-aided design. He is passionate
about teaching. He was also a recipient of the AIEEE Topper’s Scholarship
(from July 2012 to May 2016) and the Half-Time Teaching Assistantship
(since July 2016) both from the Ministry of Human Resource Development,
Government of India.

PRANJAL BHASKARE was born in Khandwa,
Madhya Pradesh, India, in 1996. He received the
B.Tech. and M.Tech. degrees from the Indian
Institute of Technology Madras. During this time,
he worked on various projects like "Classifica-
tion of 3D Models" and "Malaria Parasite Detec-
tion." He also collaborated with Knorr-Bremse to
develop different object detection APIs to achieve
vehicle autonomy. He is currently a Data Scientist
with Reliance Jio, where he is working on the gene

sequence analysis and other business problems.

RAMANATHAN MUTHUGANAPATHY is cur-
rently a Professor with the Department of Engi-
neering Design, IIT Madras, where he heads
the Advanced Geometric Computing Laboratory
(AGCL). His research interests include data analy-
sis using machine/deep learning, algorithm devel-
opment for problems such as reconstruction,
Voronoi diagrams, optimal locations for visibility,
and virtual/augmented reality. He has received best
paper awards in premier international conferences
on solid modeling and CAD.

VOLUME 9, 2021 22723

